module type S = Model_intf.S
Represents a polymoprhic cache of sequences mapped to probabilities and expectations
module Events: Model_intf.EVENTS
The module type representing a collection of events
module Event: module type of Events.Event
The module type representing one event
module Cache: module type of Cache.Make(Events)(Data)
The riak cache backing the probability model.
type
update_rule = Prob_cache_common.Update_rules.Update_fn.t
Defines the update rule for expectations
type
prior_count = Events.t -> int
Defines a prior function in terms of counts with the observed events as input.
type
prior_exp = Events.t -> float
Define a prior function in terms of real values with the observed events as input.
type
t
A probability model cache
val count : Events.t ->
t -> (int, [> Opts.Get.error ]) Async.Std.Deferred.Result.t
How many times events
was observed for the model cache t
.
Errors during the riak fetch routine are propogated back in the deferred result.
val observe : ?cnt:int ->
?exp:float ->
Events.t ->
t ->
(t,
[> `Bad_conn
| `Bad_payload
| `Incomplete_payload
| `Notfound
| `Overflow
| `Protobuf_encoder_error
| `Unknown_type
| `Wrong_type ])
Async.Std.Deferred.Result.t
Observe events with a default count and expectation of 1.
val prob : ?cond:Events.t ->
Events.t ->
t -> (float, [> Opts.Get.error ]) Async.Std.Deferred.Result.t
Probability of events given observed events, possibly the empty events
val exp : ?cond:Events.t ->
Events.t ->
t -> (float, [> Opts.Get.error ]) Async.Std.Deferred.Result.t
Expectation of events given observed events, possibly the empty events
val name : t -> string
Gets the name of the cache
val with_model : ?update_rule:update_rule ->
?prior_count:prior_count ->
?prior_exp:prior_exp ->
host:string ->
port:int ->
name:string ->
(t -> ('a, [> Conn.error ] as 'e) Async.Std.Deferred.Result.t) ->
('a, 'e) Async.Std.Deferred.Result.t
Execute a deferred function for the specified model where name
corresponds to a riak bucket for
the given host
and port
. Can optionally specify custom update rules or prior functions.